Sparse Optimization

Wing-Kin (Ken) Ma

Department of Electronic Engineering, The Chinese University Hong Kong, Hong Kong

ELEG5481, Lecture 13

Acknowledgment: Thank Jiaxian Pan and Xiao Fu for helping prepare the slides.

Introduction

- In signal processing, many problems involve finding a sparse solution.
 - compressive sensing
 - signal separation
 - recommendation system
 - direction of arrival estimation
 - robust face recognition
 - background extraction
 - text mining
 - hyperspectral imaging
 - MRI
 - ...

Single Measurement Vector Problem

• Sparse single measurement vector (SMV) problem: Given an observation vector $y \in \mathbb{R}^m$ and a matrix $A \in \mathbb{R}^{m \times n}$, find $x \in \mathbb{R}^n$ such that

$$y = Ax,$$

and x is sparsest, i.e., x has the fewest number of nonzero entries.

• We assume that $m \ll n$, i.e., the number of observations is much smaller than the dimension of the source signal.



Sparse solution recovery

• We try to recover the sparsest solution by solving

 $\min_{x} \|x\|_{0}$
s.t. y = Ax

where $||x||_0$ is the number of nonzero entries of x.

• In the literature, $||x||_0$ is commonly called the " ℓ_0 -norm", though it is not a norm.

Solving the SMV Problem

- The SMV problem is NP-hard in general.
- An exhaustive search method:
 - Fix the support of $x \in \mathbf{R}^n$, i.e., determine which entry of x is zero or non-zero.
 - Check if the corresponding x has a solution for y = Ax.
 - By solving all 2^n equations, an optimal solution can be found.
- A better way is to use the branch and bound method. But it is still very time-consuming.
- It is natural to seek approximate solutions.

Greedy Pursuit

- Greedy pursuit generates an approximate solution to SMV by recursively building an estimate \hat{x} .
- Greedy pursuit at each iterations follows two essential operations
 - Element selection: determine the support I of \hat{x} (i.e. which elements are nonzero.)
 - Coefficient update: Update the coefficient \hat{x}_i for $i \in I$.

Orthogonal Matching Pursuit (OMP)

- One of the oldest and simplest greedy pursuit algorithm is the orthogonal matching pursuit (OMP).
- First, initialize the support $I^{(0)} = \emptyset$ and estimate $\hat{x}^{(0)} = 0$.
- For $k = 1, 2, \ldots$ do
 - Element selection: determine an index j^* and add it to $I^{(k-1)}$.

 $\begin{aligned} r^{(k)} &= y - A\hat{x}^{(k-1)} & (\text{Compute residue } r^{(k)}). \\ j^{\star} &= \arg\min_{\substack{j=1,\dots,n \\ x}} \|r^{(k)} - a_j x\|_2 & (\text{Find the column that reduces residue most}) \\ I^{(k)} &= I^{(k-1)} \cup \{j^{\star}\} & (\text{Add } j^{\star} \text{ to } I^{(k)}) \end{aligned}$

- Coefficient update: with support $I^{(k)}$, minimize the estimation residue,

$$\hat{x}^{(k)} = \arg \max_{x:x_i=0, i \notin I^{(k)}} \|y - Ax\|_2.$$

ℓ_1 -norm heuristics

• Another method is to approximate the nonconvex $||x||_0$ by a convex function.

 $\min_{x} \|x\|_{1}$
s.t. y = Ax.

- The above problem is also known as basis pursuit in the literature.
- This problem is convex (an LP actually).

Interpretation as convex relaxation

• Let us start with the original formulation (with a bound on x)

$$\min_{x} \|x\|_{0}$$

s.t. $y = Ax$, $\|x\|_{\infty} \le R$.

• The above problem can be rewritten as a mixed Boolean convex problem

$$\min_{x,z} \mathbf{1}^T z$$

s.t. $y = Ax$,
 $|x_i| \le Rz_i, \quad i = 1, \dots, n$
 $z_i \in \{0, 1\}, \quad i = 1, \dots, n$

• Relax $z_i \in \{0,1\}$ to $z_i \in [0,1]$ to obtain

$$\min_{x,z} \mathbf{1}^T z$$

s.t. $y = Ax$,
 $|x_i| \le Rz_i, \quad i = 1, \dots, n$
 $0 \le z_i \le 1, \quad i = 1, \dots, n.$

• Observing that $z_i = |x_i|/R$ at optimum , the problem above is equivalent to

$$\min_{x,z} \|x\|_1/R$$

s.t. $y = Ax$,

which is the ℓ_1 -norm heuristic.

• The optimal value of the above problem is a lower bound on that of the original problem.

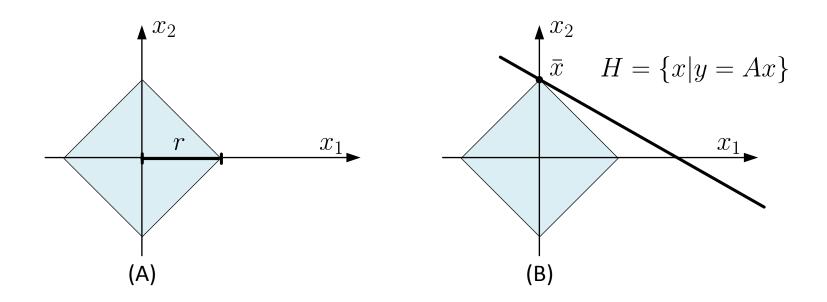
Interpretation via convex envelope

• Given a function f with domain C, the convex envelope f^{env} is the largest possible convex underestimation of f over C, i.e.,

$$f^{\text{env}}(x) = \sup\{g(x) \mid g(x') \le f(x'), \forall x' \in \mathcal{C}, g(x) \text{ convex}\}.$$

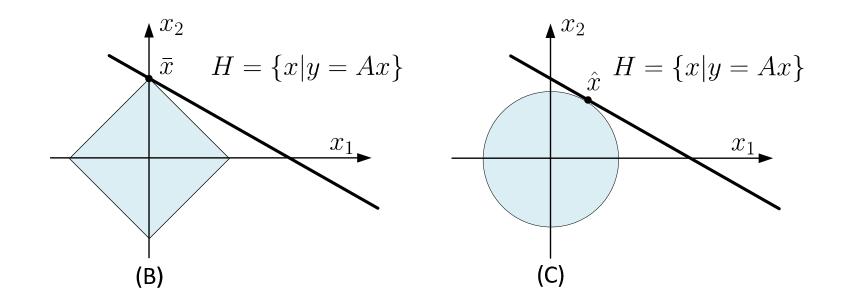
- When x is a scalar, |x| is the convex envelope of $||x||_0$ on [-1, 1].
- When x is a vector, $||x||_1/R$ is convex envelope of $||x||_0$ on $\mathcal{C} = \{x \mid ||x||_\infty \leq R\}$.

ℓ_1 -norm geometry



- Fig. A shows the ℓ_1 ball of some radius r in \mathbb{R}^2 . Note that the ℓ_1 ball is "pointy" along the axes.
- Fig. B shows the ℓ_1 recovery problem. The point \bar{x} is a "sparse" vector; the line H is the set of x that shares the same measurement y.

ℓ_1 -norm geometry



- The ℓ_1 recovery problem is to pick out a point in H that has the minimum ℓ_1 norm. We can see that \bar{x} is such a point.
- Fig. C shows the geometry when ℓ_2 norm is used instead of ℓ_1 norm. We can see that the solution \hat{x} may not be sparse.

Recovery guarantee of ℓ_1 -norm minimization

- When ℓ_1 -norm minimization is equivalent to ℓ_0 -norm minimization?
- Sufficient conditions are provided by characterizing the structure of A and the sparsity of the desirable x.
 - Example: Let $\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\|_2 \|a_j\|_2}$ which is called the mutual coherence. If there exists an x such that y = Ax and

$$\mu(A) \le \frac{1}{2\|x\|_0 - 1},$$

then x is the unique solution of ℓ_1 -norm minimization. It is also the solution of the corresponding ℓ_0 -norm minimization.

- Such mutual coherence condition means that sparser x and "more orthonormal" A provide better chance of perfect recovery by ℓ_1 -norm minimization.
- Other conditions: restricted isometry property (R.I.P.) condition, null space property, ...

Recovery guarantee of ℓ_1 -norm minimization

There are several other variations.

• Basis pursuit denoising

 $\min \|x\|_1$
s.t. $\|y - Ax\|_2 \le \epsilon.$

• Penalized least squares

min $||Ax - b||_2^2 + \lambda ||x||_1$.

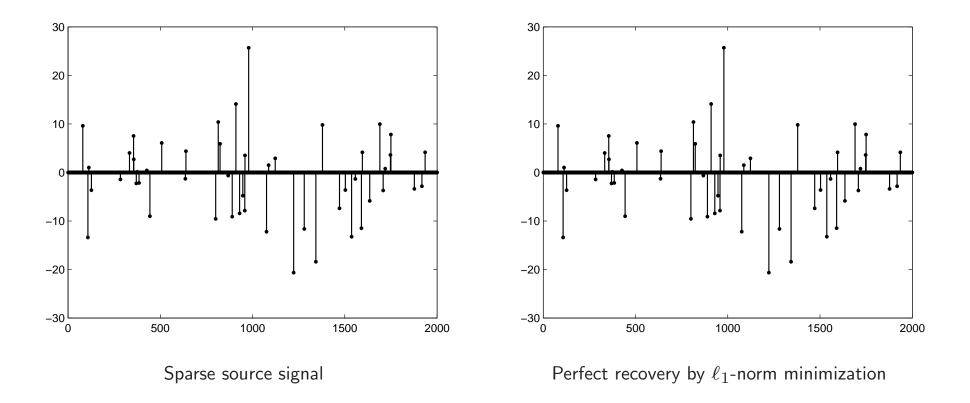
• Lasso Problem

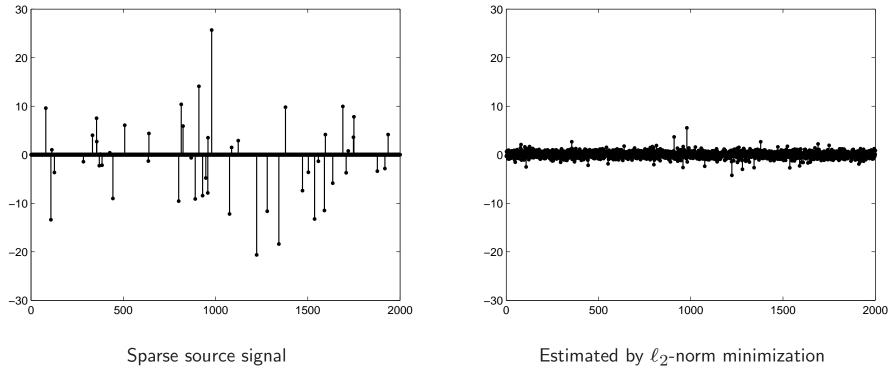
min
$$||Ax - b||_2^2$$

s.t. $||x||_1 \le \tau$.

Application: Sparse signal reconstruction

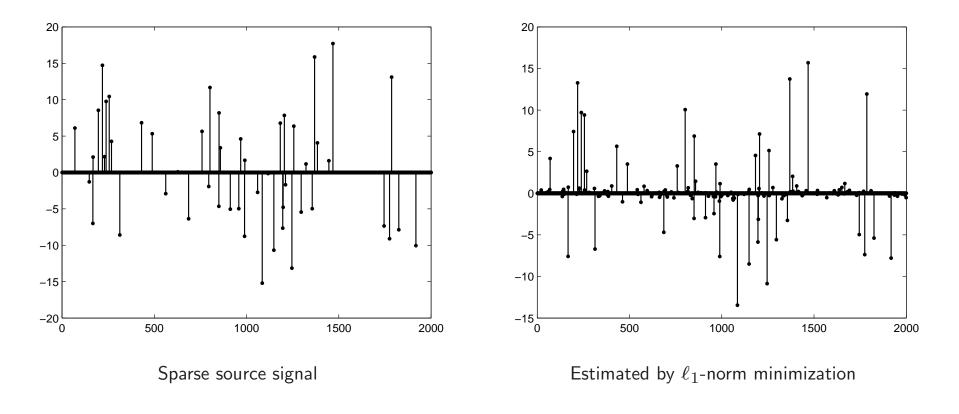
- Sparse signal $x \in \mathbf{R}^n$ with n = 2000 and $||x||_0 = 50$.
- m = 400 noise-free observations of y = Ax, where $A_{ij} \sim \mathcal{N}(0, 1)$.

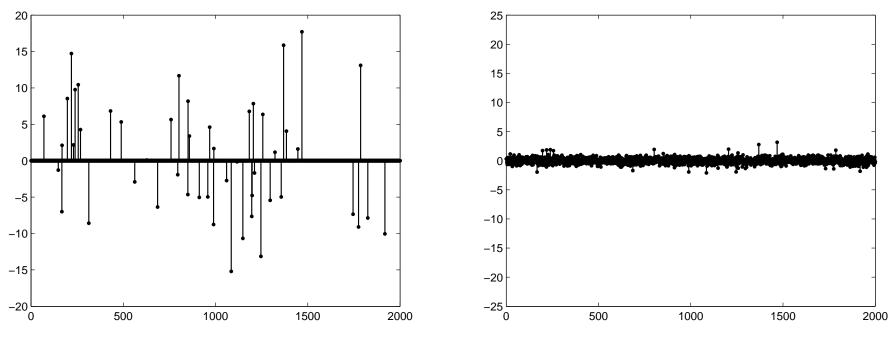




Estimated by $\ell_2\text{-norm}$ minimization

- Sparse signal $x \in \mathbf{R}^n$ with n = 2000 and $||x||_0 = 50$.
- m = 400 noisy observations of $y = Ax + \nu$, where $A_{ij} \sim \mathcal{N}(0, 1)$ and $\nu_i \sim \mathcal{N}(0, \delta^2)$.
- Basis pursuit denoising is used.
- $\delta^2 = 100$ and $\epsilon = \sqrt{m\delta^2}$.





Sparse source signal

Estimated by $\ell_2\text{-norm}$ minimization

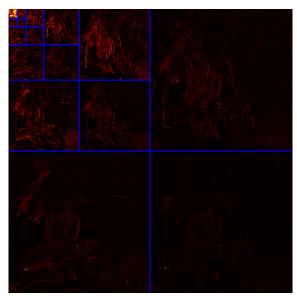
Application: Compressive sensing (CS)

• Consider a signal $\tilde{x} \in \mathbf{R}^n$ that has a sparse representation $x \in \mathbf{R}^n$ in the domain of $\Psi \in \mathbf{R}^{n \times n}$ (e.g. FFT and wavelet), i.e.,

$$\tilde{x} = \Psi x.$$

where x is sparse.

The pirate image $\tilde{\boldsymbol{x}}$



The wavelet transform \boldsymbol{x}

• To acquire information of the signal x, we use a sensing matrix $\Phi \in {\bf R}^{m \times n}$ to observe x

$$y = \Phi \tilde{x} = \Phi \Psi x.$$

Here, we have $m \ll n$, i.e., we only obtain very few observations compared to the dimension of x.

- Such a y will be good for compression, transmission and storage.
- \tilde{x} is recovered by recovering x:

 $\min \|x\|_0$
s.t. y = Ax,

where $A = \Phi \Psi$.

Application: Total Variation-based Denoising

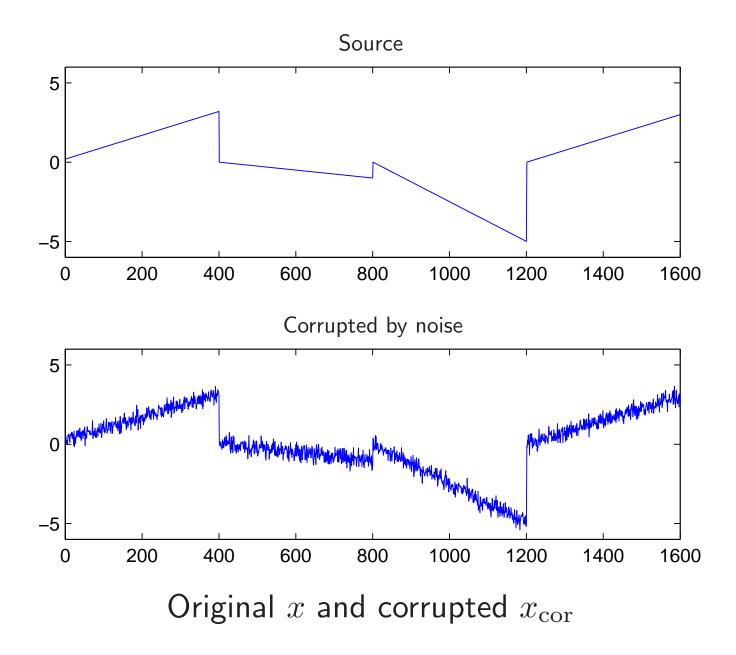
- Scenario:
 - We want to estimate $x \in \mathbf{R}^n$ from a noisy measurement $x_{cor} = x + n$.
 - -x is known to be piecewise linear, i.e., for most i we have

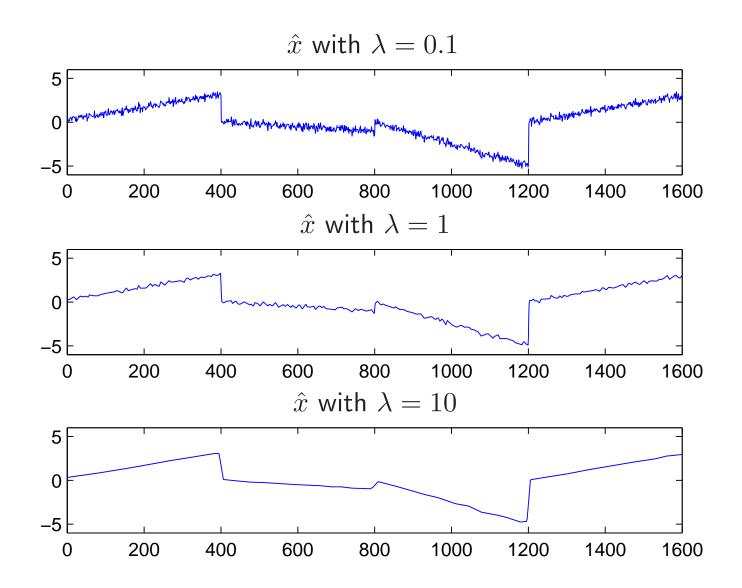
$$x_i - x_{i-1} = x_{i+1} - x_i \iff -x_{i+1} + 2x_i - x_{i+1} = 0.$$

- Equivalently, Dx is sparse, where

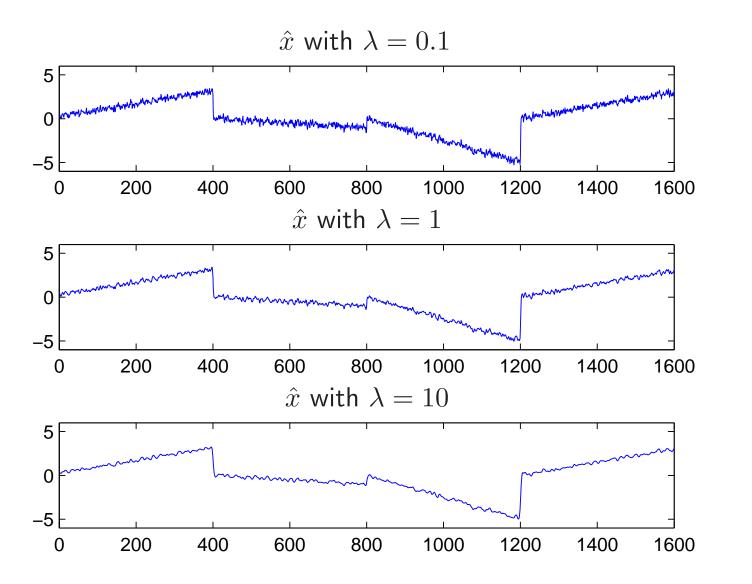
$$D = \begin{bmatrix} -1 & 2 & 1 & 0 & \dots \\ 0 & -1 & 2 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & -1 & 2 & 1 \end{bmatrix}.$$

- Problem formulation: $\hat{x} = \arg \min_x \|x_{cor} x\|_2 + \lambda \|Dx\|_0$.
- Heuristic: change $||Dx||_0$ to $||Dx||_1$.





Denoised signals with different λ 's and by $\hat{x} = \arg \min_x \|x_{cor} - x\|_2 + \lambda \|Dx\|_1$.



Denoised signals with different λ 's and by $\hat{x} = \arg \min_x \|x_{cor} - x\|_2 + \lambda \|Dx\|_2$.

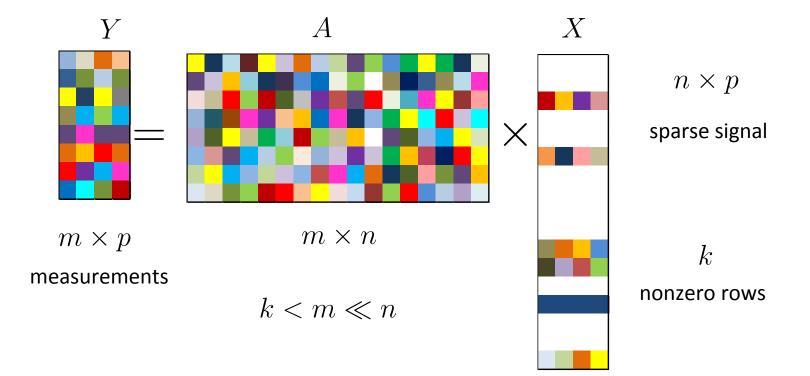
Matrix Sparsity

The notion of sparsity for a matrix X may refer to several different meanings.

- Element-wise sparsity: $\|\operatorname{vec}(X)\|_0$ is small.
- Row sparsity: X only has a few nonzero rows.
- Rank sparsity: rank(X) is small.

Row sparsity

• Let $X = [x_1, \ldots, x_p]$. Row sparsity means that each x_i shares the same support.



Row sparsity

• Multiple measurement vector (MMV) problem

 $\min_{X} \|X\|_{\text{row-0}}$
s.t. Y = AX,

where $||X||_{row-0}$ denote the number of nonzero rows.

• Empirically, MMV works (much) better than SMV in many applications.

• Mixed-norm relaxation approach:

$$\min_{X} \|X\|_{q,p}^{p}$$

s.t. $Y = AX$,

where $||X||_{q,p} = (\sum_{i=1}^{m} ||x^i||_q^p)^{(1/p)}$ and x^i denotes the *i*th row in X.

- For $q \in [1,\infty]$ and p = 1, this is a convex problem.
- For (p,q) = (1,2), this problem can be formulated as an SOCP

$$\min_{t,X} \sum_{i=1}^{m} t_i$$

s.t. $Y = AX$
 $||x^i||_2 \le t_i, \ i = 1, \dots, m$

• Some variations:

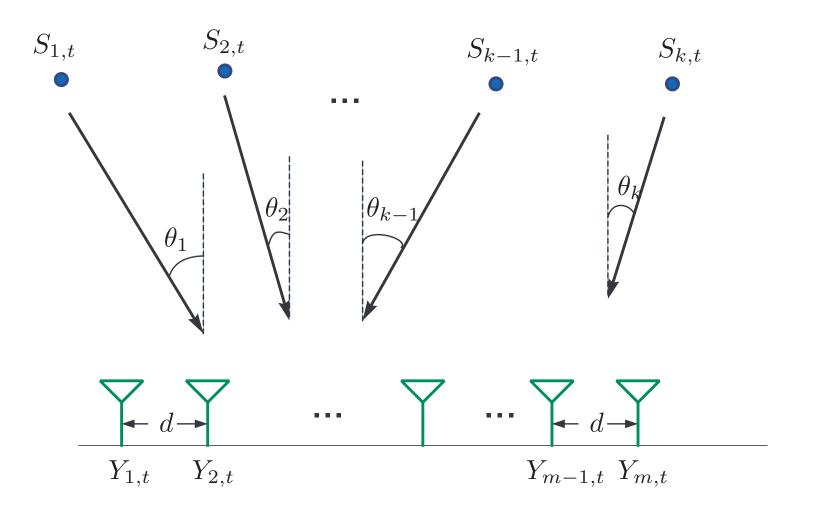
 $\min \|X\|_{2,1}$
s.t. $\|Y - AX\|_F \le \epsilon.$

 $\min \|AX - Y\|_F^2 + \lambda \|X\|_{2,1}$

min $||AX - b||_F^2$ s.t. $||X||_{2,1} \le \tau$.

• Other algorithms: Simultaneously Orthogonal Matching Pursuit (SOMP), Compressive Multiple Signal Classification (Compressive MUSIC), Nonconvex mixed-norm approach (by choosing 0), ...

Application: Direction-of-Arrival (DOA) estimation



Application: Direction-of-Arrival (DOA) estimation

• Considering $t = 1, \ldots, p$, the signal model is

$$Y = A(\theta)S + N,$$

where

$$A(\theta) = \begin{bmatrix} 1 & \dots & 1\\ e^{-\frac{j2\pi d}{\gamma}\sin(\theta_1)} & \dots & e^{-\frac{j2\pi d}{\gamma}\sin(\theta_m)}\\ \vdots & \vdots & \vdots\\ e^{-\frac{j2\pi d}{\gamma}(n-1)\sin(\theta_1)} & \dots & e^{-\frac{j2\pi d}{\gamma}(n-1)\sin(\theta_m)} \end{bmatrix}$$

 $Y \in \mathbf{R}^{m \times p}$ are received signals, $S \in \mathbf{R}^{k \times p}$ sources, $N \in \mathbf{R}^{m \times p}$ noise, m and k number of receivers and sources, and γ is the wavelength.

• Objective: estimate $\theta = [\theta_1, \dots, \theta_k]^T$, where $\theta_i \in [-90^\circ, 90^\circ]$ for $i = 1, \dots, k$.

• Construct

$$A = [a(-90^{\circ}), a(-89^{\circ}), a(-88^{\circ}), \dots, a(88^{\circ}), a(89^{\circ}), a(90^{\circ})],$$

where $a(\theta) = [1, e^{-\frac{j2\pi d}{\gamma}\sin(\theta)}, \dots, e^{-\frac{j2\pi d}{\gamma}\sin(\theta)}]^T$.

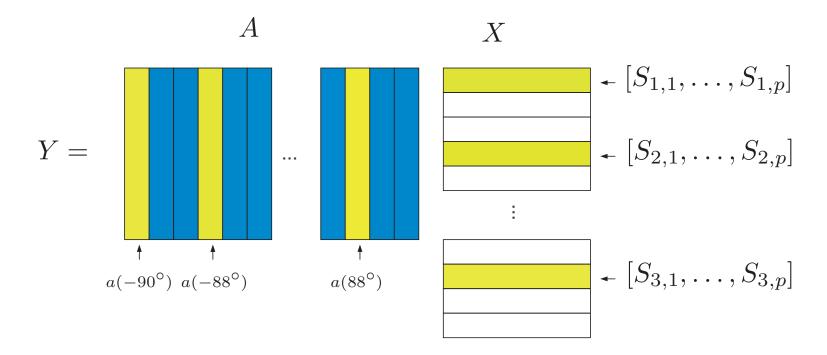
• By such construction, we have

$$A(\theta) = [a(\theta_1), \dots, a(\theta_k)],$$

is approximately a submatrix of A.

- DOA estimation is approximately equivalent to finding the columns of $A(\theta)$ in A.
- Discretizing [-90°, 90°] to more dense grids may increase the estimation accuracy while require more computation resources.

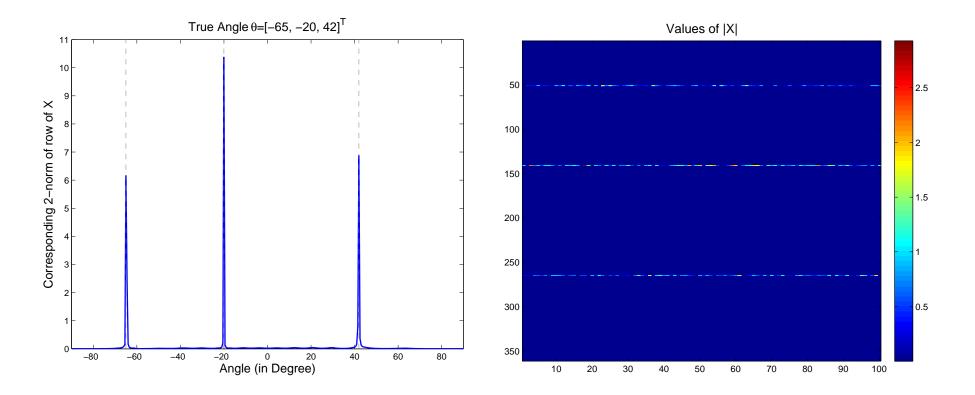
• Example: k = 3, $\theta = [-90^{\circ}, -88^{\circ}, 88^{\circ}]$.



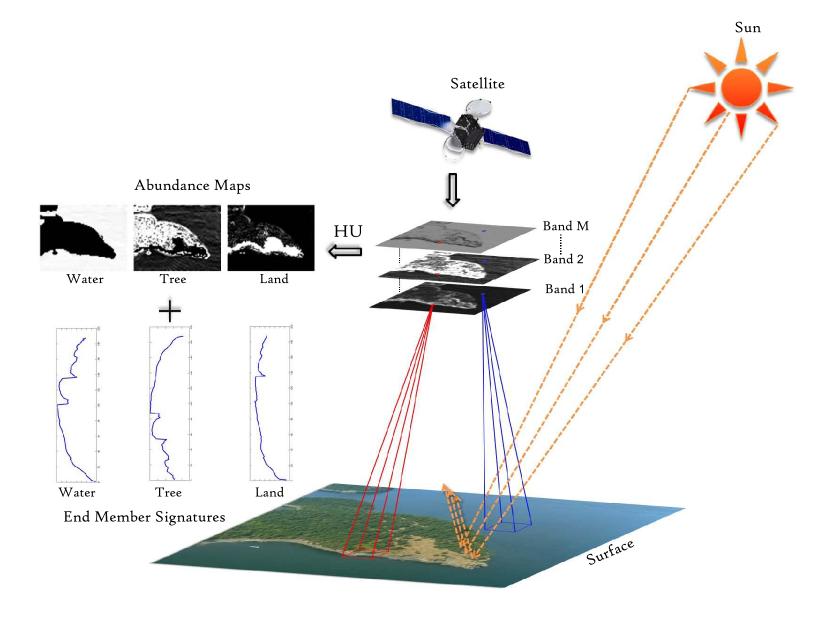
- To locate the "active columns" in A is equivalent to find a row-sparse X.
- Problem formulation:

$$\min_{X} \|Y - AX\|_{F}^{2} + \lambda \|X\|_{2,1}.$$

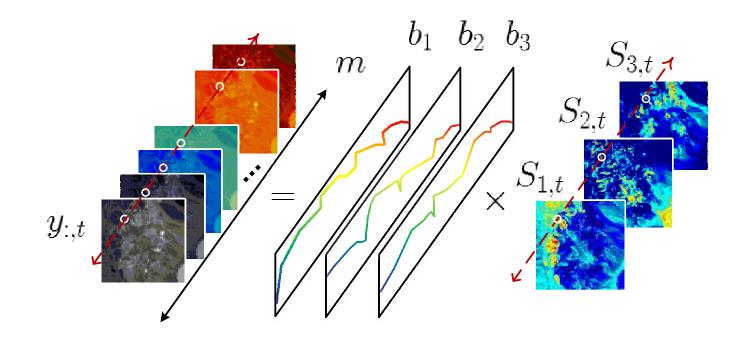
Simulation: k = 3, p = 100, n = 8 and SNR= 30dB; three sources come from -65° , -20° and 42° , respectively. $A = [a(-90^{\circ}), a(-89.5^{\circ}), \dots, a(90^{\circ})] \in \mathbb{R}^{m \times 381}$.



Application: Library-based Hyperspectral Image Separation



- Consider a hyperspectral image (HSI) captured by a remote sensor (satellite, aircraft, etc.).
- Each pixel of HSI is an m-dimensional vector, corresponding to spectral info. of m bands.
- The spectral shape can be used for classifying materials on the ground.
- During the process of image capture, the spectra of different materials might be mixed in pixels.



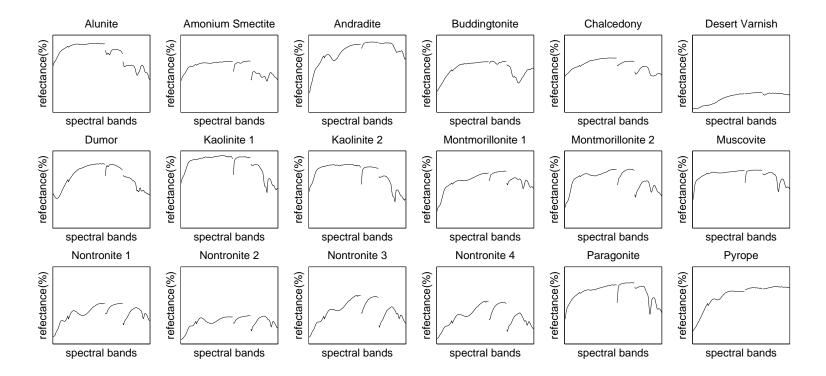
• Signal Model:

Y = BS + N,

where $Y \in \mathbf{R}^{m \times p}$ is HSI with p pixels, $B = [b_1, \ldots, b_k] \in \mathbf{R}^{m \times k}$ are spectra of materials, $S \in \mathbf{R}^{k \times p}_+$, $S_{i,j}$ represents the amount of material i in pixel j, and N is the noise.

• To know what materials are in pixels, we need to estimate B and S.

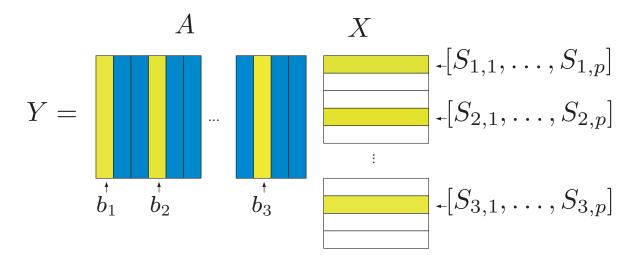
• There are spectral libraries providing spectra of more than a thousand materials.



Some recorded spectra of minerals in U.S.G.S library.

• In many cases, an HSI pixel can be considered as a mixture of 3 to 5 spectra in a known library, which records hundreds of spectra.

• Example: Suppose that $B = [b_1, b_2, b_3]$ is a submatrix of a known library A. Again, we have

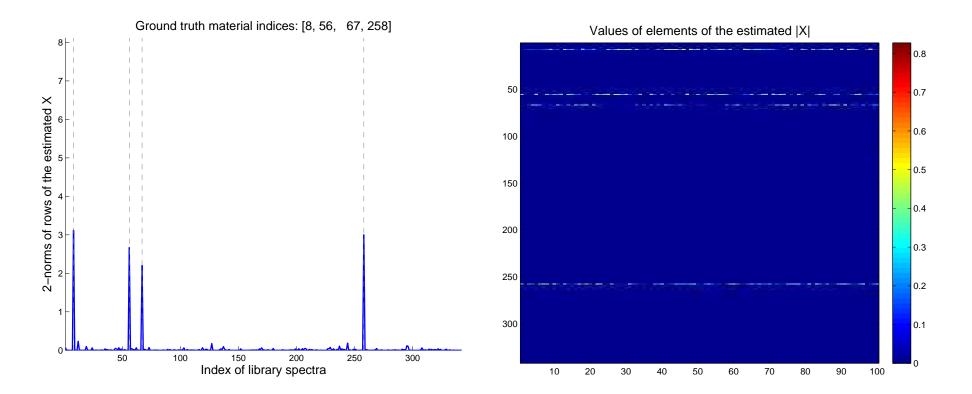


- Estimation of B and S can be done via finding the row-sparse X.
- Problem formulation:

$$\min_{X \ge 0} \|Y - AX\|_F^2 + \lambda \|X\|_{2,1},$$

where the non-negativity of X is added for physical consistency (since elements of S represent amounts of materials in a pixel.)

Simulation: we employ the pruned U.S. Geological Survey (U.S.G.S.) library with n = 342 spectra vectors; each spectra vector has m = 224 elements; the synthetic HSI consists of k = 4 selected materials from the same library; number of pixels p = 1000; SNR=40dB.



Rank sparsity

• Rank minimization problem

 $\min_{X} \operatorname{rank}(X)$
s.t. $\mathcal{A}(X) = Y$,

where \mathcal{A} is a linear operator (i.e., $A \times \operatorname{vec}(X) = \operatorname{vec}(Y)$ for some matrix A).

- When X is restricted to be diagonal, $rank(X) = ||diag(X)||_0$ and the rank minimization problem reduces to the SMV problem.
- Therefore, the rank minimization problem is more general (and more difficult) than the SMV problem.

• The nuclear norm $||X||_*$ is defined as the sum of singular values, i.e.

$$\|X\|_* = \sum_{i=1}^r \sigma_i.$$

- The nuclear norm is the convex envelope of the rank function on the convex set $\{X \mid ||X||_2 \le 1\}.$
- This motivates us to use nuclear norm to approximate the rank function.

$$\min_{X} \|X\|_{*}$$

s.t. $\mathcal{A}(X) = Y$.

• Perfect recovery is guaranteed if certain properties hold for \mathcal{A} .

• It can be shown that the nuclear norm $\|X\|_*$ can be computed by an SDP

$$\|X\|_{*} = \min_{Z_{1}, Z_{2}} \frac{1}{2} \operatorname{tr}(Z_{1} + Z_{2})$$

s.t. $\begin{bmatrix} Z_{1} & X \\ X^{T} & Z_{2} \end{bmatrix} \succeq 0.$

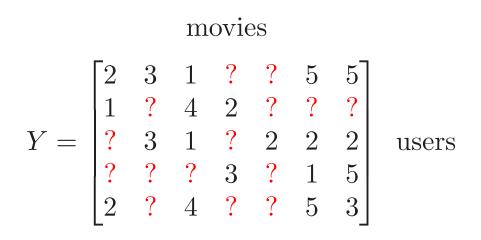
• Therefore, the nuclear norm approximation can be turned to an SDP

$$\min_{X,Z_1,Z_2} \frac{1}{2} \operatorname{tr}(Z_1 + Z_2)$$

s.t. $Y = \mathcal{A}(X)$
$$\begin{bmatrix} Z_1 & X \\ X^T & Z_2 \end{bmatrix} \succeq 0.$$

Application: Matrix Completion Problem

- Recommendation system: recommend new movies to users based on their previous preference.
- Consider a preference matrix Y with y_{ij} representing how user i likes movie j.
- But some y_{ij} are unknown since no one watches all movies
- We would like to predict how users like new movies.
- Y is assumed to be of low rank, as researches show that only a few factors affect users' preferences.



• Low rank matrix completion

min rank(X) s.t. $x_{ij} = y_{ij}$, for $(i, j) \in \Omega$,

where Ω is the set of observed entries.

• Nuclear norm approximation

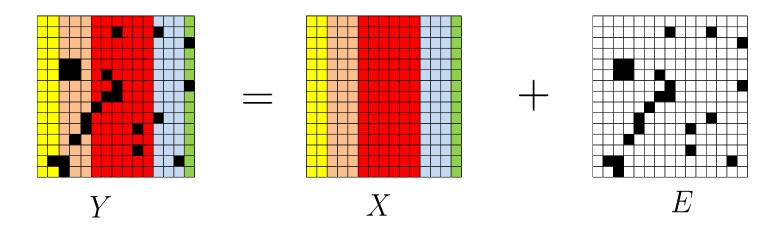
min $||X||_*$ s.t. $x_{ij} = y_{ij}$, for $(i, j) \in \Omega$.

Low-rank matrix + element-wise sparse corruption

• Consider the signal model

$$Y = X + E$$

where Y is the observation, X a low-rank signal, and E some sparse corruption with $|E_{ij}|$ arbitrarily large.



• The objective is to separate X from E via Y.

• Simultaneous rank and element-wise sparse recovery

```
min rank(X) + \gamma \| \operatorname{vec}(E) \|_0
s.t. Y = X + E,
```

where $\gamma \geq 0$ is used for balancing rank sparsity and element-wise sparsity.

• Replacing $\operatorname{rank}(X)$ by $||X||_*$ and $||\operatorname{vec}(E)||_0$ by $||\operatorname{vec}(E)||_1$, we have a convex problem:

 $\min ||X||_* + \gamma ||\operatorname{vec}(E)||_1$ s.t. Y = X + E.

• A theoretical result indicates that when X is of low-rank and E is sparse enough, exact recovery happens with very high probability.

Application: Background extraction

• Suppose that we are given video sequences $F_i, i = 1, ..., p$.

- Our objective is to exact the background in the video sequences.
- The background is of low-rank, as the background is static within a short period of time.
- The foreground is sparse, as activities in the foreground only occupy a small fraction of space.

• Stacking the video sequences $Y = [vec(F_1), \dots, vec(F_p)]$, we have

$$Y = X + E,$$

where X represents the low-rank background, and E the sparse foreground.

• Nuclear norm and ℓ_1 -norm approximation:

 $\min ||X||_* + \gamma ||\operatorname{vec}(E)||_1$ s.t. Y = X + E.

- 500 images, image size 160×128 , $\gamma = 1/\sqrt{160 \times 128}$.
- Row 1: the original video sequences.
- Row 2: the extracted low-rank background.
- Row 3: the extracted sparse foreground.

Low-rank matrix + sparse corruption + dense noise

• A more general model

 $Y = \mathcal{A}(X + E) + V,$

where X is low-rank, E sparse corruption, V dense but small noise, and $\mathcal{A}(\cdot)$ a linear operator.

• Simultaneous rank and element-wise sparse recovery with denoising

$$\min_{X,E,V} \operatorname{rank}(X) + \gamma \|\operatorname{vec}(E)\|_0 + \lambda \|V\|_F$$

s.t. $Y = \mathcal{A}(X + E) + V.$

• Convex approximation

$$\min_{X,E,V} \|X\|_* + \gamma \|\operatorname{vec}(E)\|_1 + \lambda \|V\|_F$$

s.t. $Y = \mathcal{A}(X + E) + V.$

• A final remark: In sparse optimization, problem dimension is usually very large. You probably need fast custom-made algorithms instead of relying on CVX.

Reference

S. Boyd, " ℓ_1 -norm methods for convex-cardinality problems", lecture note of EE364b, Standford university.

J Romberg, "Imaging via compressive sensing", Signal Processing Magazine, 2008.

Y. Ma, A. Yang, and J. Wright, "Sparse Representation and low-rank representation", tutorial note in European conference on computer vision, 2012

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications", Cambridge University Press, 2012.

J. Chen and X. Huo, "Theoretical Results on Sparse Representations of Multiple-Measurement Vectors", *IEEE Trans. Signal Process.*, 2006

D. Malioutov, M. Cetin, and A. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays", *IEEE Trans. Signal Process.*, 2005.

M.-D. lordache, J. Bioucas-Dias, and A. Plaza, "Collaborative Sparse Regression for Hyperspectral Unmixing", *accepted for publication in IEEE Trans. Geosci. Remote Sens.*, 2013.