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Introduction

• In signal processing, many problems involve finding a sparse solution.

– compressive sensing
– signal separation
– recommendation system
– direction of arrival estimation
– robust face recognition
– background extraction
– text mining
– hyperspectral imaging
– MRI
– ...
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Single Measurement Vector Problem

• Sparse single measurement vector (SMV) problem: Given an observation
vector y ∈ R

m and a matrix A ∈ R
m×n, find x ∈ R

n such that

y = Ax,

and x is sparsest, i.e., x has the fewest number of nonzero entries.

• We assume that m ≪ n, i.e., the number of observations is much smaller than
the dimension of the source signal.
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Sparse solution recovery

• We try to recover the sparsest solution by solving

min
x

‖x‖0
s.t. y = Ax

where ‖x‖0 is the number of nonzero entries of x.

• In the literature, ‖x‖0 is commonly called the “ℓ0-norm”, though it is not a
norm.
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Solving the SMV Problem

• The SMV problem is NP-hard in general.

• An exhaustive search method:

– Fix the support of x ∈ R
n, i.e., determine which entry of x is zero or non-zero.

– Check if the corresponding x has a solution for y = Ax.
– By solving all 2n equations, an optimal solution can be found.

• A better way is to use the branch and bound method. But it is still very
time-consuming.

• It is natural to seek approximate solutions.
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Greedy Pursuit

• Greedy pursuit generates an approximate solution to SMV by recursively building
an estimate x̂.

• Greedy pursuit at each iterations follows two essential operations

– Element selection: determine the support I of x̂ (i.e. which elements are
nonzero.)

– Coefficient update: Update the coefficient x̂i for i ∈ I .
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Orthogonal Matching Pursuit (OMP)

• One of the oldest and simplest greedy pursuit algorithm is the orthogonal
matching pursuit (OMP).

• First, initialize the support I(0) = ∅ and estimate x̂(0) = 0.

• For k = 1, 2, . . . do

– Element selection: determine an index j⋆ and add it to I(k−1).

r(k) = y − Ax̂(k−1) (Compute residue r(k)).

j⋆ = arg min
j=1,...,n

x

‖r(k) − ajx‖2 (Find the column that reduces residue most)

I(k) = I(k−1) ∪ {j⋆} (Add j⋆ to I(k))

– Coefficient update: with support I(k), minimize the estimation residue,

x̂(k) = arg max
x:xi=0, i/∈I(k)

‖y − Ax‖2.

7



ℓ1-norm heuristics

• Another method is to approximate the nonconvex ‖x‖0 by a convex function.

min
x

‖x‖1
s.t. y = Ax.

• The above problem is also known as basis pursuit in the literature.

• This problem is convex (an LP actually).
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Interpretation as convex relaxation

• Let us start with the original formulation (with a bound on x)

min
x

‖x‖0
s.t. y = Ax, ‖x‖∞ ≤ R.

• The above problem can be rewritten as a mixed Boolean convex problem

min
x,z

1
Tz

s.t. y = Ax,

|xi| ≤ Rzi, i = 1, . . . , n

zi ∈ {0, 1}, i = 1, . . . , n.
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• Relax zi ∈ {0, 1} to zi ∈ [0, 1] to obtain

min
x,z

1
Tz

s.t. y = Ax,

|xi| ≤ Rzi, i = 1, . . . , n

0 ≤ zi ≤ 1, i = 1, . . . , n.

• Observing that zi = |xi|/R at optimum , the problem above is equivalent to

min
x,z

‖x‖1/R

s.t. y = Ax,

which is the ℓ1-norm heuristic.

• The optimal value of the above problem is a lower bound on that of the original
problem.
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Interpretation via convex envelope

• Given a function f with domain C, the convex envelope f env is the largest
possible convex underestimation of f over C, i.e.,

f env(x) = sup{g(x) | g(x′) ≤ f(x′), ∀ x′ ∈ C, g(x) convex}.

• When x is a scalar, |x| is the convex envelope of ‖x‖0 on [−1, 1].

• When x is a vector, ‖x‖1/R is convex envelope of ‖x‖0 on C = {x | ‖x‖∞ ≤ R}.
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ℓ1-norm geometry

(A) (B)

• Fig. A shows the ℓ1 ball of some radius r in R
2. Note that the ℓ1 ball is “pointy”

along the axes.

• Fig. B shows the ℓ1 recovery problem. The point x̄ is a “sparse” vector; the line
H is the set of x that shares the same measurement y.
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ℓ1-norm geometry

• The ℓ1 recovery problem is to pick out a point in H that has the minimum ℓ1
norm. We can see that x̄ is such a point.

• Fig. C shows the geometry when ℓ2 norm is used instead of ℓ1 norm. We can
see that the solution x̂ may not be sparse.
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Recovery guarantee of ℓ1-norm minimization

• When ℓ1-norm minimization is equivalent to ℓ0-norm minimization?

• Sufficient conditions are provided by characterizing the structure of A and the
sparsity of the desirable x.

– Example: Let µ(A) = maxi 6=j
|aTi aj|

‖ai‖2‖aj‖2
which is called the mutual coherence.

If there exists an x such that y = Ax and

µ(A) ≤ 1
2‖x‖0−1,

then x is the unique solution of ℓ1-norm minimization. It is also the solution
of the corresponding ℓ0-norm minimization.

– Such mutual coherence condition means that sparser x and “more
orthonormal” A provide better chance of perfect recovery by ℓ1-norm
minimization.

• Other conditions: restricted isometry property (R.I.P.) condition, null space
property, ...
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Recovery guarantee of ℓ1-norm minimization

There are several other variations.

• Basis pursuit denoising

min ‖x‖1
s.t. ‖y −Ax‖2 ≤ ǫ.

• Penalized least squares

min ‖Ax− b‖22 + λ‖x‖1.

• Lasso Problem

min ‖Ax− b‖22
s.t. ‖x‖1 ≤ τ.
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Application: Sparse signal reconstruction

• Sparse signal x ∈ R
n with n = 2000 and ‖x‖0 = 50.

• m = 400 noise-free observations of y = Ax, where Aij ∼ N (0, 1).
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• Sparse signal x ∈ R
n with n = 2000 and ‖x‖0 = 50.

• m = 400 noisy observations of y = Ax+ ν, where Aij ∼ N (0, 1) and
νi ∼ N (0, δ2).

• Basis pursuit denoising is used.

• δ2 = 100 and ǫ =
√
mδ2.

0 500 1000 1500 2000
−20

−15

−10

−5

0

5

10

15

20

Sparse source signal

0 500 1000 1500 2000
−15

−10

−5

0

5

10

15

20

Estimated by ℓ1-norm minimization

18



0 500 1000 1500 2000
−20

−15

−10

−5

0

5

10

15

20

Sparse source signal

0 500 1000 1500 2000
−25

−20

−15

−10

−5

0

5

10

15

20

25

Estimated by ℓ2-norm minimization

19



Application: Compressive sensing (CS)

• Consider a signal x̃ ∈ R
n that has a sparse representation x ∈ R

n in the domain
of Ψ ∈ R

n×n (e.g. FFT and wavelet), i.e.,

x̃ = Ψx.

where x is sparse.

The pirate image x̃ The wavelet transform x
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• To acquire information of the signal x, we use a sensing matrix Φ ∈ R
m×n to

observe x
y = Φx̃ = ΦΨx.

Here, we have m ≪ n, i.e., we only obtain very few observations compared to
the dimension of x.

• Such a y will be good for compression, transmission and storage.

• x̃ is recovered by recovering x:

min ‖x‖0
s.t. y = Ax,

where A = ΦΨ.
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Application: Total Variation-based Denoising

• Scenario:

– We want to estimate x ∈ R
n from a noisy measurement xcor = x+ n.

– x is known to be piecewise linear, i.e., for most i we have

xi − xi−1 = xi+1 − xi ⇐⇒ −xi+1 + 2xi − xi+1 = 0.

– Equivalently, Dx is sparse, where

D =









−1 2 1 0 . . .
0 −1 2 1 . . .
... ... ... ... ...
. . . . . . −1 2 1









.

• Problem formulation: x̂ = argminx ‖xcor − x‖2 + λ‖Dx‖0.

• Heuristic: change ‖Dx‖0 to ‖Dx‖1.
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Matrix Sparsity

The notion of sparsity for a matrix X may refer to several different meanings.

• Element-wise sparsity: ‖vec(X)‖0 is small.

• Row sparsity: X only has a few nonzero rows.

• Rank sparsity: rank(X) is small.
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Row sparsity

• Let X = [x1, . . . , xp]. Row sparsity means that each xi shares the same support.

measurements
nonzero rows

sparse signal
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Row sparsity

• Multiple measurement vector (MMV) problem

min
X

‖X‖row-0

s.t. Y = AX,

where ‖X‖row-0 denote the number of nonzero rows.

• Empirically, MMV works (much) better than SMV in many applications.
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• Mixed-norm relaxation approach:

min
X

‖X‖pq,p
s.t. Y = AX,

where ‖X‖q,p = (
∑m

i=1 ‖xi‖pq)(1/p) and xi denotes the ith row in X .

• For q ∈ [1,∞] and p = 1, this is a convex problem.

• For (p, q) = (1, 2), this problem can be formulated as an SOCP

min
t,X

m
∑

i=1

ti

s.t. Y = AX

‖xi‖2 ≤ ti, i = 1, . . . ,m.
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• Some variations:

min ‖X‖2,1
s.t. ‖Y −AX‖F ≤ ǫ.

min ‖AX − Y ‖2F + λ‖X‖2,1

min ‖AX − b‖2F
s.t. ‖X‖2,1 ≤ τ.

• Other algorithms: Simultaneously Orthogonal Matching Pursuit (SOMP),
Compressive Multiple Signal Classification (Compressive MUSIC), Nonconvex
mixed-norm approach (by choosing 0 < p < 1), ...
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Application: Direction-of-Arrival (DOA) estimation

... ...

...
S1,t S2,t Sk−1,t Sk,t

Y1,t Y2,t Ym−1,t Ym,t

θ1
θ2 θk−1

θk

dd
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Application: Direction-of-Arrival (DOA) estimation

• Considering t = 1, . . . , p, the signal model is

Y = A(θ)S +N,

where

A(θ) =











1 . . . 1

e−
j2πd
γ sin(θ1) . . . e−

j2πd
γ sin(θm)

... ... ...

e−
j2πd
γ (n−1) sin(θ1) . . . e−

j2πd
γ (n−1) sin(θm)











Y ∈ R
m×p are received signals, S ∈ R

k×p sources, N ∈ R
m×p noise, m and k

number of receivers and sources, and γ is the wavelength.

• Objective: estimate θ = [θ1, . . . , θk]
T , where θi ∈ [−90◦, 90◦] for i = 1, . . . , k.
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• Construct

A = [ a(−90◦), a(−89◦), a(−88◦), . . . , a(88◦), a(89◦), a(90◦) ],

where a(θ) = [ 1, e−
j2πd
γ sin(θ), . . . , e−

j2πd
γ sin(θ) ]T .

• By such construction, we have

A(θ) = [ a(θ1), . . . , a(θk) ],

is approximately a submatrix of A.

• DOA estimation is approximately equivalent to finding the columns of A(θ) in
A.

• Discretizing [−90◦, 90◦] to more dense grids may increase the estimation accuracy
while require more computation resources.
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• Example: k = 3, θ = [−90◦,−88◦, 88◦].

...

...

Y =

A X

[S1,1, . . . , S1,p]

[S2,1, . . . , S2,p]

[S3,1, . . . , S3,p]a(−90◦) a(−88◦) a(88◦)

• To locate the “active columns” in A is equivalent to find a row-sparse X .

• Problem formulation:

min
X

‖Y − AX‖2F + λ‖X‖2,1.
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Simulation: k = 3, p = 100, n = 8 and SNR= 30dB; three sources come from
−65◦, −20◦ and 42◦, respectively. A = [ a(−90◦), a(−89.5◦), . . . , a(90◦) ] ∈
R

m×381.
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Application: Library-based Hyperspectral Image Separation
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• Consider a hyperspectral image (HSI) captured by a remote sensor (satellite,
aircraft, etc.).

• Each pixel of HSI is an m-dimensional vector, corresponding to spectral info. of
m bands.

• The spectral shape can be used for classifying materials on the ground.

• During the process of image capture, the spectra of different materials might be
mixed in pixels.
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• Signal Model:
Y = BS +N,

where Y ∈ R
m×p is HSI with p pixels, B = [b1, . . . , bk] ∈ R

m×k are spectra of

materials, S ∈ R
k×p
+ , Si,j represents the amount of material i in pixel j, and N

is the noise.

• To know what materials are in pixels, we need to estimate B and S.
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• There are spectral libraries providing spectra of more than a thousand materials.
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Some recorded spectra of minerals in U.S.G.S library.

• In many cases, an HSI pixel can be considered as a mixture of 3 to 5 spectra in
a known library, which records hundreds of spectra.
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• Example: Suppose that B = [b1, b2, b3] is a submatrix of a known library A.
Again, we have

...

...

Y =

A X
[S1,1, . . . , S1,p]

[S2,1, . . . , S2,p]

[S3,1, . . . , S3,p]b1 b2 b3

• Estimation of B and S can be done via finding the row-sparse X .

• Problem formulation:

min
X≥0

‖Y −AX‖2F + λ‖X‖2,1,

where the non-negativity of X is added for physical consistency (since elements
of S represent amounts of materials in a pixel.)
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Simulation: we employ the pruned U.S. Geological Survey (U.S.G.S.) library with
n = 342 spectra vectors; each spectra vector has m = 224 elements; the synthetic
HSI consists of k = 4 selected materials from the same library; number of pixels
p = 1000; SNR=40dB.
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Rank sparsity

• Rank minimization problem

min
X

rank(X)

s.t. A(X) = Y,

where A is a linear operator (i.e., A× vec(X) = vec(Y ) for some matrix A).

• When X is restricted to be diagonal, rank(X) = ‖diag(X)‖0 and the rank
minimization problem reduces to the SMV problem.

• Therefore, the rank minimization problem is more general (and more difficult)
than the SMV problem.
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• The nuclear norm ‖X‖∗ is defined as the sum of singular values, i.e.

‖X‖∗ =
r

∑

i=1

σi.

• The nuclear norm is the convex envelope of the rank function on the convex set
{X | ‖X‖2 ≤ 1}.

• This motivates us to use nuclear norm to approximate the rank function.

min
X

‖X‖∗

s.t. A(X) = Y.

• Perfect recovery is guaranteed if certain properties hold for A.
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• It can be shown that the nuclear norm ‖X‖∗ can be computed by an SDP

‖X‖∗ = min
Z1,Z2

1
2tr(Z1 + Z2)

s.t.

[

Z1 X
XT Z2

]

� 0.

• Therefore, the nuclear norm approximation can be turned to an SDP

min
X,Z1,Z2

1
2tr(Z1 + Z2)

s.t. Y = A(X)
[

Z1 X
XT Z2

]

� 0.
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Application: Matrix Completion Problem

• Recommendation system: recommend new movies to users based on their
previous preference.

• Consider a preference matrix Y with yij representing how user i likes movie j.

• But some yij are unknown since no one watches all movies

• We would like to predict how users like new movies.

• Y is assumed to be of low rank, as researches show that only a few factors affect
users’ preferences.

movies

Y =













2 3 1 ? ? 5 5
1 ? 4 2 ? ? ?
? 3 1 ? 2 2 2
? ? ? 3 ? 1 5
2 ? 4 ? ? 5 3













users
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• Low rank matrix completion

min rank(X)

s.t. xij = yij, for (i, j) ∈ Ω,

where Ω is the set of observed entries.

• Nuclear norm approximation

min ‖X‖∗
s.t. xij = yij, for (i, j) ∈ Ω.
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Low-rank matrix + element-wise sparse corruption

• Consider the signal model
Y = X + E

where Y is the observation, X a low-rank signal, and E some sparse corruption
with |Eij| arbitrarily large.
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• The objective is to separate X from E via Y .
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• Simultaneous rank and element-wise sparse recovery

min rank(X) + γ‖vec(E)‖0
s.t. Y = X + E,

where γ ≥ 0 is used for balancing rank sparsity and element-wise sparsity.

• Replacing rank(X) by ‖X‖∗ and ‖vec(E)‖0 by ‖vec(E)‖1, we have a convex
problem:

min ‖X‖∗ + γ‖vec(E)‖1
s.t. Y = X + E.

• A theoretical result indicates that when X is of low-rank and E is sparse enough,
exact recovery happens with very high probability.
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Application: Background extraction

• Suppose that we are given video sequences Fi, i = 1, . . . , p.

• Our objective is to exact the background in the video sequences.

• The background is of low-rank, as the background is static within a short period
of time.

• The foreground is sparse, as activities in the foreground only occupy a small
fraction of space.
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• Stacking the video sequences Y = [vec(F1), . . . , vec(Fp)], we have

Y = X + E,

where X represents the low-rank background, and E the sparse foreground.

• Nuclear norm and ℓ1-norm approximation:

min ‖X‖∗ + γ‖vec(E)‖1
s.t. Y = X + E.
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• 500 images, image size 160× 128, γ = 1/
√
160× 128.

• Row 1: the original video sequences.

• Row 2: the extracted low-rank background.

• Row 3: the extracted sparse foreground.
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Low-rank matrix + sparse corruption + dense noise
• A more general model

Y = A(X + E) + V,

where X is low-rank, E sparse corruption, V dense but small noise, and A(·) a
linear operator.

• Simultaneous rank and element-wise sparse recovery with denoising

min
X,E,V

rank(X) + γ‖vec(E)‖0 + λ‖V ‖F

s.t. Y = A(X + E) + V.

• Convex approximation

min
X,E,V

‖X‖∗ + γ‖vec(E)‖1 + λ‖V ‖F

s.t. Y = A(X + E) + V.

• A final remark: In sparse optimization, problem dimension is usually very large.
You probably need fast custom-made algorithms instead of relying on CVX.
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