Sparse Optimization

Wing-Kin (Ken) Ma
Department of Electronic Engineering, The Chinese University Hong Kong, Hong Kong

ELEG5481, Lecture 13

Acknowledgment: Thank Jiaxian Pan and Xiao Fu for helping prepare the slides.

Introduction

- In signal processing, many problems involve finding a sparse solution.
- compressive sensing
- signal separation
- recommendation system
- direction of arrival estimation
- robust face recognition
- background extraction
- text mining
- hyperspectral imaging
- MRI
- ...

Single Measurement Vector Problem

- Sparse single measurement vector (SMV) problem: Given an observation vector $y \in \mathbf{R}^{m}$ and a matrix $A \in \mathbf{R}^{m \times n}$, find $x \in \mathbf{R}^{n}$ such that

$$
y=A x,
$$

and x is sparsest, i.e., x has the fewest number of nonzero entries.

- We assume that $m \ll n$, i.e., the number of observations is much smaller than the dimension of the source signal.

Sparse solution recovery

- We try to recover the sparsest solution by solving

$$
\begin{aligned}
& \min _{x}\|x\|_{0} \\
& \text { s.t. } y=A x
\end{aligned}
$$

where $\|x\|_{0}$ is the number of nonzero entries of x.

- In the literature, $\|x\|_{0}$ is commonly called the " ℓ_{0}-norm", though it is not a norm.

Solving the SMV Problem

- The SMV problem is NP-hard in general.
- An exhaustive search method:
- Fix the support of $x \in \mathbf{R}^{n}$, i.e., determine which entry of x is zero or non-zero.
- Check if the corresponding x has a solution for $y=A x$.
- By solving all 2^{n} equations, an optimal solution can be found.
- A better way is to use the branch and bound method. But it is still very time-consuming.
- It is natural to seek approximate solutions.

Greedy Pursuit

- Greedy pursuit generates an approximate solution to SMV by recursively building an estimate \hat{x}.
- Greedy pursuit at each iterations follows two essential operations
- Element selection: determine the support I of \hat{x} (i.e. which elements are nonzero.)
- Coefficient update: Update the coefficient \hat{x}_{i} for $i \in I$.

Orthogonal Matching Pursuit (OMP)

- One of the oldest and simplest greedy pursuit algorithm is the orthogonal matching pursuit (OMP).
- First, initialize the support $I^{(0)}=\emptyset$ and estimate $\hat{x}^{(0)}=0$.
- For $k=1,2, \ldots$ do
- Element selection: determine an index j^{\star} and add it to $I^{(k-1)}$.

$$
\begin{array}{rlrl}
r^{(k)} & =y-A \hat{x}^{(k-1)} & & \left(\text { Compute residue } r^{(k)}\right) . \\
j^{\star} & =\arg \min _{j=1, \ldots, n}^{x}\left\|r^{(k)}-a_{j} x\right\|_{2} & (\text { Find the column that reduces residue most) } \\
I^{(k)} & =I^{(k-1)} \cup\left\{j^{\star}\right\} & & \left(\text { Add } j^{\star} \text { to } I^{(k)}\right)
\end{array}
$$

- Coefficient update: with support $I^{(k)}$, minimize the estimation residue,

$$
\hat{x}^{(k)}=\arg \max _{x: x_{i}=0, i \notin I^{(k)}}\|y-A x\|_{2}
$$

ℓ_{1}-norm heuristics

- Another method is to approximate the nonconvex $\|x\|_{0}$ by a convex function.

$$
\begin{aligned}
& \min _{x}\|x\|_{1} \\
& \text { s.t. } y=A x
\end{aligned}
$$

- The above problem is also known as basis pursuit in the literature.
- This problem is convex (an LP actually).

Interpretation as convex relaxation

- Let us start with the original formulation (with a bound on x)

$$
\begin{aligned}
& \min _{x}\|x\|_{0} \\
& \text { s.t. } y=A x, \quad\|x\|_{\infty} \leq R .
\end{aligned}
$$

- The above problem can be rewritten as a mixed Boolean convex problem

$$
\begin{aligned}
\min _{x, z} & 1^{T} z \\
\text { s.t. } & y=A x \\
& \left|x_{i}\right| \leq R z_{i}, \quad i=1, \ldots, n \\
& z_{i} \in\{0,1\}, \quad i=1, \ldots, n
\end{aligned}
$$

- Relax $z_{i} \in\{0,1\}$ to $z_{i} \in[0,1]$ to obtain

$$
\begin{aligned}
\min _{x, z} & \mathbf{1}^{T} z \\
\text { s.t. } & y=A x \\
& \left|x_{i}\right| \leq R z_{i}, \quad i=1, \ldots, n \\
& 0 \leq z_{i} \leq 1, \quad i=1, \ldots, n
\end{aligned}
$$

- Observing that $z_{i}=\left|x_{i}\right| / R$ at optimum, the problem above is equivalent to

$$
\begin{gathered}
\min _{x, z}\|x\|_{1} / R \\
\text { s.t. } y=A x
\end{gathered}
$$

which is the ℓ_{1}-norm heuristic.

- The optimal value of the above problem is a lower bound on that of the original problem.

Interpretation via convex envelope

- Given a function f with domain \mathcal{C}, the convex envelope $f^{\text {env }}$ is the largest possible convex underestimation of f over \mathcal{C}, i.e.,

$$
f^{\mathrm{env}}(x)=\sup \left\{g(x) \mid g\left(x^{\prime}\right) \leq f\left(x^{\prime}\right), \forall x^{\prime} \in \mathcal{C}, g(x) \text { convex }\right\}
$$

- When x is a scalar, $|x|$ is the convex envelope of $\|x\|_{0}$ on $[-1,1]$.
- When x is a vector, $\|x\|_{1} / R$ is convex envelope of $\|x\|_{0}$ on $\mathcal{C}=\left\{x \mid\|x\|_{\infty} \leq R\right\}$.

ℓ_{1}-norm geometry

- Fig. A shows the ℓ_{1} ball of some radius r in \mathbf{R}^{2}. Note that the ℓ_{1} ball is "pointy" along the axes.
- Fig. B shows the ℓ_{1} recovery problem. The point \bar{x} is a "sparse" vector; the line H is the set of x that shares the same measurement y.

ℓ_{1}-norm geometry

- The ℓ_{1} recovery problem is to pick out a point in H that has the minimum ℓ_{1} norm. We can see that \bar{x} is such a point.
- Fig. C shows the geometry when ℓ_{2} norm is used instead of ℓ_{1} norm. We can see that the solution \hat{x} may not be sparse.

Recovery guarantee of ℓ_{1}-norm minimization

- When ℓ_{1}-norm minimization is equivalent to ℓ_{0}-norm minimization?
- Sufficient conditions are provided by characterizing the structure of A and the sparsity of the desirable x.
- Example: Let $\mu(A)=\max _{i \neq j} \frac{\left|a_{i}^{T} a_{j}\right|}{\left\|a_{i}\right\|_{2}\left\|a_{j}\right\|_{2}}$ which is called the mutual coherence. If there exists an x such that $y=A x$ and

$$
\mu(A) \leq \frac{1}{2\|x\|_{0}-1},
$$

then x is the unique solution of ℓ_{1}-norm minimization. It is also the solution of the corresponding ℓ_{0}-norm minimization.

- Such mutual coherence condition means that sparser x and "more orthonormal" A provide better chance of perfect recovery by ℓ_{1}-norm minimization.
- Other conditions: restricted isometry property (R.I.P.) condition, null space property, ...

Recovery guarantee of ℓ_{1}-norm minimization

There are several other variations.

- Basis pursuit denoising

$$
\begin{aligned}
\min & \|x\|_{1} \\
\text { s.t. } & \|y-A x\|_{2} \leq \epsilon
\end{aligned}
$$

- Penalized least squares

$$
\min \|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- Lasso Problem

$$
\begin{gathered}
\min \\
\\
\text { s.t. }
\end{gathered}\|x\|_{1} \leq \tau \|_{2}^{2}
$$

Application: Sparse signal reconstruction

- Sparse signal $x \in \mathbf{R}^{n}$ with $n=2000$ and $\|x\|_{0}=50$.
- $m=400$ noise-free observations of $y=A x$, where $A_{i j} \sim \mathcal{N}(0,1)$.

Sparse source signal

Perfect recovery by ℓ_{1}-norm minimization

- Sparse signal $x \in \mathbf{R}^{n}$ with $n=2000$ and $\|x\|_{0}=50$.
- $m=400$ noisy observations of $y=A x+\nu$, where $A_{i j} \sim \mathcal{N}(0,1)$ and $\nu_{i} \sim \mathcal{N}\left(0, \delta^{2}\right)$.
- Basis pursuit denoising is used.
- $\delta^{2}=100$ and $\epsilon=\sqrt{m \delta^{2}}$.

Sparse source signal

Estimated by ℓ_{1}-norm minimization

Application: Compressive sensing (CS)

- Consider a signal $\tilde{x} \in \mathbf{R}^{n}$ that has a sparse representation $x \in \mathbf{R}^{n}$ in the domain of $\Psi \in \mathbf{R}^{n \times n}$ (e.g. FFT and wavelet), i.e.,

$$
\tilde{x}=\Psi x .
$$

where x is sparse.

The pirate image \tilde{x}

The wavelet transform x

- To acquire information of the signal x, we use a sensing matrix $\Phi \in \mathbf{R}^{m \times n}$ to observe x

$$
y=\Phi \tilde{x}=\Phi \Psi x .
$$

Here, we have $m \ll n$, i.e., we only obtain very few observations compared to the dimension of x.

- Such a y will be good for compression, transmission and storage.
- \tilde{x} is recovered by recovering x :

$$
\begin{aligned}
& \min \|x\|_{0} \\
& \text { s.t. } y=A x,
\end{aligned}
$$

where $A=\Phi \Psi$.

Application: Total Variation-based Denoising

- Scenario:
- We want to estimate $x \in \mathbf{R}^{n}$ from a noisy measurement $x_{\text {cor }}=x+n$.
$-x$ is known to be piecewise linear, i.e., for most i we have

$$
x_{i}-x_{i-1}=x_{i+1}-x_{i} \Longleftrightarrow-x_{i+1}+2 x_{i}-x_{i+1}=0 .
$$

- Equivalently, $D x$ is sparse, where

$$
D=\left[\begin{array}{ccccc}
-1 & 2 & 1 & 0 & \ldots \\
0 & -1 & 2 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & \ldots & -1 & 2 & 1
\end{array}\right]
$$

- Problem formulation: $\hat{x}=\arg \min _{x}\left\|x_{\text {cor }}-x\right\|_{2}+\lambda\|D x\|_{0}$.
- Heuristic: change $\|D x\|_{0}$ to $\|D x\|_{1}$.

Source

Corrupted by noise

Original x and corrupted $x_{\text {cor }}$

Denoised signals with different λ 's and by $\hat{x}=\arg \min _{x}\left\|x_{\text {cor }}-x\right\|_{2}+\lambda\|D x\|_{1}$.

Denoised signals with different λ 's and by $\hat{x}=\arg \min _{x}\left\|x_{\text {cor }}-x\right\|_{2}+\lambda\|D x\|_{2}$.

Matrix Sparsity

The notion of sparsity for a matrix X may refer to several different meanings.

- Element-wise sparsity: $\|\operatorname{vec}(X)\|_{0}$ is small.
- Row sparsity: X only has a few nonzero rows.
- Rank sparsity: $\operatorname{rank}(X)$ is small.

Row sparsity

- Let $X=\left[x_{1}, \ldots, x_{p}\right]$. Row sparsity means that each x_{i} shares the same support.

$m \times p$
measurements

$$
k<m \ll n
$$

$m \times n$

X
$n \times p$
sparse signal
k
nonzero rows

Row sparsity

- Multiple measurement vector (MMV) problem

$$
\begin{gathered}
\min _{X}\|X\|_{\text {row-0 }} \\
\text { s.t. } Y=A X,
\end{gathered}
$$

where $\|X\|_{\text {row-0 }}$ denote the number of nonzero rows.

- Empirically, MMV works (much) better than SMV in many applications.
- Mixed-norm relaxation approach:

$$
\begin{aligned}
& \min _{X}\|X\|_{q, p}^{p} \\
& \text { s.t. } Y=A X,
\end{aligned}
$$

where $\|X\|_{q, p}=\left(\sum_{i=1}^{m}\left\|x^{i}\right\|_{q}^{p}\right)^{(1 / p)}$ and x^{i} denotes the i th row in X.

- For $q \in[1, \infty]$ and $p=1$, this is a convex problem.
- For $(p, q)=(1,2)$, this problem can be formulated as an SOCP

$$
\begin{aligned}
\min _{t, X} & \sum_{i=1}^{m} t_{i} \\
\text { s.t. } & Y=A X \\
& \left\|x^{i}\right\|_{2} \leq t_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

- Some variations:

$$
\begin{aligned}
& \min \|X\|_{2,1} \\
& \text { s.t. }\|Y-A X\|_{F} \leq \epsilon \\
& \min \|A X-Y\|_{F}^{2}+\lambda\|X\|_{2,1} \\
& \text { min }\|A X-b\|_{F}^{2} \\
& \text { s.t. }\|X\|_{2,1} \leq \tau
\end{aligned}
$$

- Other algorithms: Simultaneously Orthogonal Matching Pursuit (SOMP), Compressive Multiple Signal Classification (Compressive MUSIC), Nonconvex mixed-norm approach (by choosing $0<p<1$), ...

Application: Direction-of-Arrival (DOA) estimation

Application: Direction-of-Arrival (DOA) estimation

- Considering $t=1, \ldots, p$, the signal model is

$$
Y=A(\theta) S+N
$$

where

$$
A(\theta)=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
e^{-\frac{j 2 \pi d}{\gamma} \sin \left(\theta_{1}\right)} & \ldots & e^{-\frac{j 2 \pi d}{\gamma} \sin \left(\theta_{m}\right)} \\
\vdots & \vdots & \vdots \\
e^{-\frac{j 2 \pi d}{\gamma}(n-1) \sin \left(\theta_{1}\right)} & \ldots & e^{-\frac{j 2 \pi d}{\gamma}(n-1) \sin \left(\theta_{m}\right)}
\end{array}\right]
$$

$Y \in \mathbf{R}^{m \times p}$ are received signals, $S \in \mathbf{R}^{k \times p}$ sources, $N \in \mathbf{R}^{m \times p}$ noise, m and k number of receivers and sources, and γ is the wavelength.

- Objective: estimate $\theta=\left[\theta_{1}, \ldots, \theta_{k}\right]^{T}$, where $\theta_{i} \in\left[-90^{\circ}, 90^{\circ}\right]$ for $i=1, \ldots, k$.
- Construct

$$
A=\left[a\left(-90^{\circ}\right), a\left(-89^{\circ}\right), a\left(-88^{\circ}\right), \ldots, a\left(88^{\circ}\right), a\left(89^{\circ}\right), a\left(90^{\circ}\right)\right]
$$

where $a(\theta)=\left[1, e^{-\frac{j 2 \pi d}{\gamma} \sin (\theta)}, \ldots, e^{-\frac{j 2 \pi d}{\gamma} \sin (\theta)}\right]^{T}$.

- By such construction, we have

$$
A(\theta)=\left[a\left(\theta_{1}\right), \ldots, a\left(\theta_{k}\right)\right]
$$

is approximately a submatrix of A.

- DOA estimation is approximately equivalent to finding the columns of $A(\theta)$ in A.
- Discretizing $\left[-90^{\circ}, 90^{\circ}\right]$ to more dense grids may increase the estimation accuracy while require more computation resources.
- Example: $k=3, \theta=\left[-90^{\circ},-88^{\circ}, 88^{\circ}\right]$.

- To locate the "active columns" in A is equivalent to find a row-sparse X.
- Problem formulation:

$$
\min _{X}\|Y-A X\|_{F}^{2}+\lambda\|X\|_{2,1} .
$$

Simulation: $k=3, p=100, n=8$ and $\mathrm{SNR}=30 \mathrm{~dB}$; three sources come from $-65^{\circ},-20^{\circ}$ and 42°, respectively. $A=\left[a\left(-90^{\circ}\right), a\left(-89.5^{\circ}\right), \ldots, a\left(90^{\circ}\right)\right] \in$ $\mathbf{R}^{m \times 381}$.

Values of $|\mathrm{X}|$

Application: Library-based Hyperspectral Image Separation

- Consider a hyperspectral image (HSI) captured by a remote sensor (satellite, aircraft, etc.).
- Each pixel of HSI is an m-dimensional vector, corresponding to spectral info. of m bands.
- The spectral shape can be used for classifying materials on the ground.
- During the process of image capture, the spectra of different materials might be mixed in pixels.

- Signal Model:

$$
Y=B S+N,
$$

where $Y \in \mathbf{R}^{m \times p}$ is HSI with p pixels, $B=\left[b_{1}, \ldots, b_{k}\right] \in \mathbf{R}^{m \times k}$ are spectra of materials, $S \in \mathbf{R}_{+}^{k \times p}, S_{i, j}$ represents the amount of material i in pixel j, and N is the noise.

- To know what materials are in pixels, we need to estimate B and S.
- There are spectral libraries providing spectra of more than a thousand materials.

Some recorded spectra of minerals in U.S.G.S library.

- In many cases, an HSI pixel can be considered as a mixture of 3 to 5 spectra in a known library, which records hundreds of spectra.
- Example: Suppose that $B=\left[b_{1}, b_{2}, b_{3}\right]$ is a submatrix of a known library A. Again, we have

- Estimation of B and S can be done via finding the row-sparse X.
- Problem formulation:

$$
\min _{X \geq 0}\|Y-A X\|_{F}^{2}+\lambda\|X\|_{2,1}
$$

where the non-negativity of X is added for physical consistency (since elements of S represent amounts of materials in a pixel.)

Simulation: we employ the pruned U.S. Geological Survey (U.S.G.S.) library with $n=342$ spectra vectors; each spectra vector has $m=224$ elements; the synthetic HSI consists of $k=4$ selected materials from the same library; number of pixels $p=1000 ;$ SNR=40dB.

Ground truth material indices: $[8,56,67,258]$

Values of elements of the estimated $|X|$

Rank sparsity

- Rank minimization problem

$$
\begin{aligned}
& \min _{X} \operatorname{rank}(X) \\
& \text { s.t. } \mathcal{A}(X)=Y,
\end{aligned}
$$

where \mathcal{A} is a linear operator (i.e., $A \times \operatorname{vec}(X)=\operatorname{vec}(Y)$ for some matrix A).

- When X is restricted to be diagonal, $\operatorname{rank}(X)=\|\operatorname{diag}(X)\|_{0}$ and the rank minimization problem reduces to the SMV problem.
- Therefore, the rank minimization problem is more general (and more difficult) than the SMV problem.
- The nuclear norm $\|X\|_{*}$ is defined as the sum of singular values, i.e.

$$
\|X\|_{*}=\sum_{i=1}^{r} \sigma_{i} .
$$

- The nuclear norm is the convex envelope of the rank function on the convex set $\left\{X \mid\|X\|_{2} \leq 1\right\}$.
- This motivates us to use nuclear norm to approximate the rank function.

$$
\begin{aligned}
& \min _{X}\|X\|_{*} \\
& \text { s.t. } \mathcal{A}(X)=Y .
\end{aligned}
$$

- Perfect recovery is guaranteed if certain properties hold for \mathcal{A}.
- It can be shown that the nuclear norm $\|X\|_{*}$ can be computed by an SDP

$$
\begin{aligned}
\|X\|_{*}=\min _{Z_{1}, Z_{2}} & \frac{1}{2} \operatorname{tr}\left(Z_{1}+Z_{2}\right) \\
& \text { s.t. }\left[\begin{array}{cc}
Z_{1} & X \\
X^{T} & Z_{2}
\end{array}\right] \succeq 0 .
\end{aligned}
$$

- Therefore, the nuclear norm approximation can be turned to an SDP

$$
\begin{aligned}
& \min _{X, Z_{1}, Z_{2}} \frac{1}{2} \operatorname{tr}\left(Z_{1}+Z_{2}\right) \\
& \text { s.t. } Y=\mathcal{A}(X) \\
& {\left[\begin{array}{ll}
Z_{1} & X \\
X^{T} & Z_{2}
\end{array}\right] \succeq 0 . }
\end{aligned}
$$

Application: Matrix Completion Problem

- Recommendation system: recommend new movies to users based on their previous preference.
- Consider a preference matrix Y with $y_{i j}$ representing how user i likes movie j.
- But some $y_{i j}$ are unknown since no one watches all movies
- We would like to predict how users like new movies.
- Y is assumed to be of low rank, as researches show that only a few factors affect users' preferences.

$$
Y=\left[\right] \text { users }
$$

- Low rank matrix completion

$$
\begin{array}{ll}
\min & \operatorname{rank}(X) \\
\text { s.t. } & x_{i j}=y_{i j}, \text { for }(i, j) \in \Omega
\end{array}
$$

where Ω is the set of observed entries.

- Nuclear norm approximation

$$
\begin{aligned}
\min & \|X\|_{*} \\
\text { s.t. } & x_{i j}=y_{i j}, \text { for }(i, j) \in \Omega
\end{aligned}
$$

Low-rank matrix + element-wise sparse corruption

- Consider the signal model

$$
Y=X+E
$$

where Y is the observation, X a low-rank signal, and E some sparse corruption with $\left|E_{i j}\right|$ arbitrarily large.

E

- The objective is to separate X from E via Y.
- Simultaneous rank and element-wise sparse recovery

$$
\begin{aligned}
& \min \operatorname{rank}(X)+\gamma\|\operatorname{vec}(E)\|_{0} \\
& \text { s.t. } Y=X+E
\end{aligned}
$$

where $\gamma \geq 0$ is used for balancing rank sparsity and element-wise sparsity.

- Replacing $\operatorname{rank}(X)$ by $\|X\|_{*}$ and $\|\operatorname{vec}(E)\|_{0}$ by $\|\operatorname{vec}(E)\|_{1}$, we have a convex problem:

$$
\begin{aligned}
& \min \|X\|_{*}+\gamma\|\operatorname{vec}(E)\|_{1} \\
& \text { s.t. } Y=X+E
\end{aligned}
$$

- A theoretical result indicates that when X is of low-rank and E is sparse enough, exact recovery happens with very high probability.

Application: Background extraction

- Suppose that we are given video sequences $F_{i}, i=1, \ldots, p$.

- Our objective is to exact the background in the video sequences.
- The background is of low-rank, as the background is static within a short period of time.
- The foreground is sparse, as activities in the foreground only occupy a small fraction of space.
- Stacking the video sequences $Y=\left[\operatorname{vec}\left(F_{1}\right), \ldots, \operatorname{vec}\left(F_{p}\right)\right]$, we have

$$
Y=X+E,
$$

where X represents the low-rank background, and E the sparse foreground.

- Nuclear norm and ℓ_{1}-norm approximation:

$$
\begin{aligned}
& \min \|X\|_{*}+\gamma\|\operatorname{vec}(E)\|_{1} \\
& \text { s.t. } Y=X+E
\end{aligned}
$$

- 500 images, image size $160 \times 128, \gamma=1 / \sqrt{160 \times 128}$.
- Row 1: the original video sequences.
- Row 2: the extracted low-rank background.
- Row 3: the extracted sparse foreground.

Low-rank matrix + sparse corruption + dense noise

- A more general model

$$
Y=\mathcal{A}(X+E)+V
$$

where X is low-rank, E sparse corruption, V dense but small noise, and $\mathcal{A}(\cdot)$ a linear operator.

- Simultaneous rank and element-wise sparse recovery with denoising

$$
\begin{aligned}
& \min _{X, E, V} \operatorname{rank}(X)+\gamma\|\operatorname{vec}(E)\|_{0}+\lambda\|V\|_{F} \\
& \quad \text { s.t. } Y=\mathcal{A}(X+E)+V
\end{aligned}
$$

- Convex approximation

$$
\begin{aligned}
\min _{X, E, V} & \|X\|_{*}+\gamma\|\operatorname{vec}(E)\|_{1}+\lambda\|V\|_{F} \\
\text { s.t. } Y & =\mathcal{A}(X+E)+V
\end{aligned}
$$

- A final remark: In sparse optimization, problem dimension is usually very large. You probably need fast custom-made algorithms instead of relying on CVX.

Reference

S. Boyd, " ℓ_{1}-norm methods for convex-cardinality problems", lecture note of EE364b, Standford university.

J Romberg, "Imaging via compressive sensing", Signal Processing Magazine, 2008.
Y. Ma, A. Yang, and J. Wright, "Sparse Representation and low-rank representation", tutorial note in European conference on computer vision, 2012
Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications", Cambridge University Press, 2012.
J. Chen and X. Huo, "Theoretical Results on Sparse Representations of MultipleMeasurement Vectors", IEEE Trans. Signal Process., 2006
D. Malioutov, M. Cetin, and A. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays", IEEE Trans. Signal Process., 2005.
M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Collaborative Sparse Regression for Hyperspectral Unmixing", accepted for publication in IEEE Trans. Geosci. Remote Sens., 2013.

